Reduction of food intake by intestinal macronutrient infusion is not reversed by NMDA receptor blockade.

نویسندگان

  • M Covasa
  • R C Ritter
  • G A Burns
چکیده

Rats increase their intake of food, but not water, after intraperitoneal injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate-activated ion channels. We hypothesized that MK-801 might enhance intake by interfering with intestinal chemosensory signals. To test this hypothesis, we examined the effect of the antagonist on 15% sucrose intake after an intraduodenal infusion of maltotriose, oleic acid, or phenylalanine in both real- and sham-feeding paradigms. MK-801 (100 microg/kg) significantly increased sucrose intake regardless of the composition of the infusate during real feeding. Furthermore, MK-801 had no effect on reduction of sucrose intake by intestinal nutrient infusions in sham-feeding rats. These results indicate that MK-801 does not increase meal size and duration by interfering with signals activated by intestinal macronutrients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AREGU February 47/2

Covasa, M., R. C. Ritter, and G. A. Burns. Reduction of food intake by intestinal macronutrient infusion is not reversed by NMDA receptor blockade. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 278: R345–R351, 2000.—Rats increase their intake of food, but not water, after intraperitoneal injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate-activated ion channels. We ...

متن کامل

NMDA receptor blockade attenuates CCK-induced reduction of real feeding but not sham feeding.

Systemic injection of MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor ion channels, increases meal size and delays satiation. We examined whether MK-801 increases food intake by directly interfering with actions of cholecystokinin (CCK). Prior administration of MK-801 (100 microg/kg ip) reversed the inhibitory effects of CCK-8 (2 and 4 microg/kg ip) on real feeding o...

متن کامل

Reduction of the Morphine Maintenance by Blockade of the NMDA Receptors during Extinction Period in Conditioned Place Preference Paradigm of Rats

Introduction: Activation of N-methyl-d-aspartate (NMDA) glutamate receptors in the nucleus accumbens is a component of drug-induced reward mechanism. In addition, NMDA receptors play a major role in brain reward system and activation of these receptors can change firing pattern of dopamine neurons. Blockade of glutamatergic neurotransmission reduces the expression of conditi...

متن کامل

Role of peptide YY(3-36) in the satiety produced by gastric delivery of macronutrients in rats.

Peptide YY(3-36) [PYY(3-36)] is postulated to act as a hormonal signal from gut to brain to inhibit food intake. PYY(3-36) potently reduces food intake when administered systemically or into the brain. If action of endogenous PYY(3-36) is necessary for normal satiation to occur, then pharmacological blockade of its receptors should increase food intake. Here, we determined the effects of iv inf...

متن کامل

Reduction of food intake by cholecystokinin requires activation of hindbrain NMDA-type glutamate receptors.

Intraperitoneal injection of CCK reduces food intake and triggers a behavioral pattern similar to natural satiation. Reduction of food intake by CCK is mediated by vagal afferents that innervate the stomach and small intestine. These afferents synapse in the hindbrain nucleus of the solitary tract (NTS) where gastrointestinal satiation signals are processed. Previously, we demonstrated that int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 278 2  شماره 

صفحات  -

تاریخ انتشار 2000